Skip to main content
Log in

Nonlinear dynamics of nano-resonators: an analytical approach

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Prior to the design and fabrication of MEMS/NEMS devices, analysis of static and dynamic behaviors of these systems is necessary. In the present study, the nonlinear dynamic behavior of micro- and nano-mechanical resonators is investigated and classified based on the resonator’s physical parameters for first time. The Galerkin method is used to convert the distributed-parameter model to a nonlinear ordinary differential equation where mid-plane stretching, axial stress, DC electrostatic and AC harmonic voltages are taken into account. To obtain the analytical frequency response of the micro resonator near its primary resonance, the second order multiple scales method is applied to the general equation of motion with cubic, quadratic and parametric nonlinearities. It is demonstrated that variation of the micro resonator’s physical parameters strongly affects its dynamic behavior by changing equilibrium points and their stability properties and complex behaviors appear in its frequency and phase responses. The global dynamics of the resonator is classified into four different categories in terms of the system parameters in this paper. The dynamic characteristics and frequency response of each class are analyzed numerically as well as analytically. Comparison of the obtained closed-form solution with the numerical simulation results confirms its validity. A striking point of the obtained closed-form solution is that it predicts some complex nonlinear behaviors of the resonator. This paper presents a quick and efficient method for determining the global dynamics of the micro-resonators and can be useful in design and analyses of these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Azgin K, Akin T, Valdevit L (2012) Ultrahigh-dynamic-range resonant MEMS load cells for micromechanical test frames. Microelectromech Syst J 21(6):1519–1529

    Article  Google Scholar 

  • Baghani M (2012) Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. Int J Eng Sci 54:99–105

    Article  MathSciNet  Google Scholar 

  • Belardinelli P et al (2013) Dynamical characteristics of an electrically actuated microbeam under the effects of squeeze-film and thermoelastic damping. Int J Eng Sci 69:16–32

    Article  MathSciNet  Google Scholar 

  • Dohn S et al (2005) Enhanced functionality of cantilever based mass sensors using higher modes. Appl Phys Lett 86(23):233501

    Article  Google Scholar 

  • Erbe A et al (2000) Mechanical mixing in nonlinear nanomechanical resonators. Appl Phys Lett 77(19):3102–3104

    Article  Google Scholar 

  • Fakhrabadi MMS, Rastgoo A, Ahmadian MT (2013) Dynamic behaviours of carbon nanotubes under dc voltage based on strain gradient theory. J Phys D Appl Phys 46(40):405101

    Article  Google Scholar 

  • Haghighi HS, Markazi AH (2010) Chaos prediction and control in MEMS resonators. Commun Nonlinear Sci Numer Simul 15(10):3091–3099

    Article  Google Scholar 

  • Hajjam A, Pourkamali S (2012) Fabrication and characterization of MEMS-based resonant organic gas sensors. Sens J IEEE 12(6):1958–1964

    Article  Google Scholar 

  • Hassanpour PA et al (2010) Nonlinear vibration of micromachined asymmetric resonators. J Sound Vib 329(13):2547–2564

    Article  Google Scholar 

  • Hu Y, Yang J, Kitipornchai S (2010) Pull-in analysis of electrostatically actuated curved micro-beams with large deformation. Smart Mater Struct 19(6):065030

    Article  Google Scholar 

  • Jia X et al (2012) Resonance frequency response of geometrically nonlinear micro-switches under electrical actuation. J Sound Vib 331(14):3397–3411

    Article  Google Scholar 

  • Joglekar M, Pawaskar D (2011) Closed-form empirical relations to predict the static pull-in parameters of electrostatically actuated microcantilevers having linear width variation. Microsyst Technol 17(1):35–45

    Article  Google Scholar 

  • Kacem N et al (2009) Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors. Nanotechnology 20(27):275501

    Article  Google Scholar 

  • Lakrad F, Belhaq M (2010) Suppression of pull-in instability in MEMS using a high-frequency actuation. Commun Nonlinear Sci Numer Simul 15(11):3640–3646

    Article  Google Scholar 

  • Mestrom R et al (2008) Modelling the dynamics of a MEMS resonator: simulations and experiments. Sens Actuators A 142(1):306–315

    Article  Google Scholar 

  • Miandoab EM et al (2014a) Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories. Physica E 63:223–228

    Article  Google Scholar 

  • Miandoab EM, Yousefi-Koma A, Pishkenari HN (2014b) Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams. Microsyst Technol 21(2):457–464

    Article  Google Scholar 

  • Miandoab EM, Pishkenari HN, Yousefi-Koma A (2014) Chaos predition in MEMS-NEMS resonators. Int J Eng Sci 82:74–83

    Article  Google Scholar 

  • Mojahedi M et al (2011) Analytic solutions to the oscillatory behavior and primary resonance of electrostatically actuated microbridges. Int J Struct Stab Dyn 11(06):1119–1137

    Article  MATH  MathSciNet  Google Scholar 

  • Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  • Palaniapan M, Khine L (2008) Nonlinear behavior of SOI free-free micromechanical beam resonator. Sens Actuators A 142(1):203–210

    Article  Google Scholar 

  • Rocha LA et al (2011) Auto-calibration of capacitive MEMS accelerometers based on pull-in voltage. Microsyst Technol 17(3):429–436

    Article  Google Scholar 

  • Sharma M et al (2012) Parametric resonance: Amplification and damping in MEMS gyroscopes. Sens Actuators A 177:79–86

    Article  Google Scholar 

  • Siewe MS, Hegazy UH (2011) Homoclinic bifurcation and chaos control in MEMS resonators. Appl Math Model 35(12):5533–5552

    Article  MATH  MathSciNet  Google Scholar 

  • Timurdogan E et al (2011) MEMS biosensor for detection of Hepatitis A and C viruses in serum. Biosens Bioelectron 28(1):189–194

    Article  Google Scholar 

  • Tocchio A, Caspani A, Langfelder G (2012) Mechanical and electronic amplitude-limiting techniques in a MEMS resonant accelerometer. Sens J IEEE 12(6):1719–1725

    Article  Google Scholar 

  • Wen-Hui L, Ya-Pu Z (2003) Dynamic behaviour of nanoscale electrostatic actuators. Chin Phys Lett 20(11):2070

    Article  Google Scholar 

  • Younis MI (2011) MEMS linear and nonlinear statics and dynamics, vol 20. Springer Science and Business Media, Berlin

    Google Scholar 

  • Younis M, Nayfeh A (2003) A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn 31(1):91–117

    Article  MATH  MathSciNet  Google Scholar 

  • Younis M et al (2010) Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation. Microelectromech Syst J 19(3):647–656

    Article  Google Scholar 

  • Zhang L, Zhao Y-P (2003) Electromechanical model of RF MEMS switches. Microsyst Technol 9(6–7):420–426

    Article  Google Scholar 

  • Zhang Y, Zhao Y-P (2006) Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading. Sens Actuators A 127(2):366–380

    Article  Google Scholar 

  • Zhang Y, Liu Y, Murphy KD (2012) Nonlinear dynamic response of beam and its application in nanomechanical resonator. Acta Mech Sin 28(1):190–200

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Iranian National Science Foundation (INSF) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Maani Miandoab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miandoab, E.M., Pishkenari, H.N. & Yousefi-Koma, A. Nonlinear dynamics of nano-resonators: an analytical approach. Microsyst Technol 22, 2259–2271 (2016). https://doi.org/10.1007/s00542-015-2657-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2657-6

Keywords

Navigation